Gnm.Matrix¶
Fields¶
Name |
Type |
Access |
Description |
|---|---|---|---|
cols |
r/w |
||
data |
r/w |
||
ref_count |
r/w |
||
rows |
r/w |
Methods¶
class |
|
class |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Details¶
- class Gnm.Matrix¶
- classmethod from_value(v, ep)¶
- Parameters:
ep (
Gnm.EvalPos) – Evaluation location
- Returns:
A new
Gnm.Matrix,Noneon error.- perr:
Gnm.Valuewith errorGOffice.value
- Return type:
(
Gnm.MatrixorNone, perr:Gnm.Value)
- classmethod new(rows, cols)¶
- Parameters:
- Returns:
A new
Gnm.Matrix.- Return type:
- eigen(EIG)¶
- Parameters:
EIG (
Gnm.Matrix) – OutputGnm.Matrix- Returns:
- eigenvalues:
Output location for eigen values.
- Return type:
Calculates the eigenvalues and eigenvectors of a real symmetric matrix.
This is the Jacobi iterative process in which we use a sequence of Jacobi rotations (two-sided Givens rotations) in order to reduce the magnitude of off-diagonal elements while preserving eigenvalues.
- modified_cholesky(L, D, E, P)¶
- Parameters:
L (
Gnm.Matrix) –D (
float) –E (
float) –P (
int) –
- Return type:
- multiply(A, B)¶
- Parameters:
A (
Gnm.Matrix) –Gnm.MatrixB (
Gnm.Matrix) –Gnm.Matrix
Computes A * B and stores the result in C. The matrices must have suitable sizes.
- ref()¶
- Returns:
a new reference to self.
- Return type:
Gnm.MatrixorNone
- unref()¶